4 research outputs found

    Hepatic cysteine sulphinic acid decarboxylase depletion and defective taurine metabolism in a rat partial nephrectomy model of chronic kidney disease

    Get PDF
    © 2021, The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Background: Taurine depletion occurs in patients with end-stage chronic kidney disease (CKD). In contrast, in the absence of CKD, plasma taurine is reported to increase following dietary L-glutamine supplementation. This study tested the hypothesis that taurine biosynthesis decreases in a rat CKD model, but is rectified by L-glutamine supplementation. Methods: CKD was induced by partial nephrectomy in male Sprague-Dawley rats, followed 2 weeks later by 2 weeks of 12% w/w L-glutamine supplemented diet (designated NxT) or control diet (NxC). Sham-operated control rats (S) received control diet. Results: Taurine concentration in plasma, liver and skeletal muscle was not depleted, but steady-state urinary taurine excretion (a measure of whole-body taurine biosynthesis) was strongly suppressed (28.3 ± 8.7 in NxC rats versus 78.5 ± 7.6 μmol/24 h in S, P < 0.05), accompanied by reduced taurine clearance (NxC 0.14 ± 0.05 versus 0.70 ± 0.11 ml/min/Kg body weight in S, P < 0.05). Hepatic expression of mRNAs encoding key enzymes of taurine biosynthesis (cysteine sulphinic acid decarboxylase (CSAD) and cysteine dioxygenase (CDO)) showed no statistically significant response to CKD (mean relative expression of CSAD and CDO in NxC versus S was 0.91 ± 0.18 and 0.87 ± 0.14 respectively). Expression of CDO protein was also unaffected. However, CSAD protein decreased strongly in NxC livers (45.0 ± 16.8% of that in S livers, P < 0.005). L-glutamine supplementation failed to rectify taurine biosynthesis or CSAD protein expression, but worsened CKD (proteinuria in NxT 12.5 ± 1.2 versus 6.7 ± 1.5 mg/24 h in NxC, P < 0.05). Conclusion: In CKD, hepatic CSAD is depleted and taurine biosynthesis impaired. This is important in view of taurine’s reported protective effect against cardio-vascular disease - the leading cause of death in human CKD.Peer reviewe

    Hyperphosphatemia Drives Procoagulant Microvesicle Generation in the Rat Partial Nephrectomy Model of CKD.

    No full text
    Hyperphosphatemia has been proposed as a cardiovascular risk factor, contributing to long-term vascular calcification in hyperphosphatemic Chronic Kidney Disease (CKD) patients. However, more recent studies have also demonstrated acute effects of inorganic phosphate (Pi) on endothelial cells in vitro, especially generation of pro-coagulant endothelial microvesicles (MV). Hitherto, such direct effects of hyperphosphatemia have not been reported in vivo. Thirty-six male Sprague-Dawley rats were randomly allocated to three experimental groups: (1) CKD induced by partial nephrectomy receiving high (1.2%) dietary phosphorus; (2) CKD receiving low (0.2%) dietary phosphorus; and (3) sham-operated controls receiving 1.2% phosphorus. After 14 days the animals were sacrificed and plasma MVs counted by nanoparticle tracking analysis. MVs isolated by centrifugation were assayed for pro-coagulant activity by calibrated automated thrombography, and relative content of endothelium-derived MVs was assessed by anti-CD144 immunoblotting. When compared with sham controls, high phosphorus CKD rats were shown to be hyperphosphatemic (4.11 ± 0.23 versus 2.41 ± 0.22 mM Pi, p < 0.0001) with elevated total plasma MVs (2.24 ± 0.37 versus 1.31 ± 0.24 × 108 per ml, p < 0.01), showing increased CD144 expression (145 ± 25% of control value, p < 0.0001), and enhanced procoagulant activity (18.06 ± 1.75 versus 4.99 ± 1.77 nM peak thrombin, p < 0.0001). These effects were abolished in the low phosphorus CKD group. In this rat model, hyperphosphatemia (or a Pi-dependent hormonal response derived from it) is sufficient to induce a marked increase in circulating pro-coagulant MVs, demonstrating an important link between hyperphosphatemia and thrombotic risk in CKD
    corecore